FORMAL LANGUAGES

Alphabets and Strings

- An alphabet \sum is a finite set of characters (or symbols).
- A word, or sequence, or string over \sum is any group of 0 or more consecutive characters of \sum.
- The length of a word is the number of characters in the word.
- The null string is the string of length 0 . It is denoted ε or λ.
- A string of length n is really an ordered n-tuple of characters written without parentheses or commas.
- Given two strings x and y over \sum, the concatenation of x and y is the string xy obtained by putting all the characters of y right after x .

Languages over an alphabet

Let \sum be an alphabet. A formal language over \sum is a set of strings over \sum.

- \varnothing is the empty language (over Σ)
- $\sum^{\mathrm{n}}=\left\{\right.$ all strings over \sum that have length $\left.n\right\}$ where $n \in \mathbb{N}$
- $\Sigma^{+}=$the positive closure of $\sum=\left\{\right.$ all strings over \sum that have length $\left.\geq 1\right\}$
- $\sum^{*}=$ the Kleene closure of $\sum=\{$ all strings over $\Sigma\}$

Operations on Languages

Let \sum be an alphabet. Let L and L^{\prime} be two languages defined over \sum.
The following operations define new languages over \sum :

- The concatenation of L and L^{\prime}, denoted $L L^{\prime}$, is $L L^{\prime}=\left\{x y \mid x \in L \wedge y \in L^{\prime}\right\}$
- The union of L and L^{\prime}, denoted $L \cup L^{\prime}$, is $L \cup L^{\prime}=\left\{x \mid x \in L \vee x \in L^{\prime}\right\}$
- The Kleene closure of L, denoted L^{*}, is $L^{*}=\{x \mid x$ is a concatenation of any finite number of strings in L$\}$. Note that $\varepsilon \in \mathrm{L}^{*}$.

REGULAR EXPRESSIONS

Definition

Let \sum be an alphabet. The following are regular expressions (r.e.) over \sum :
I. BASE: ε and each individual symbol of \sum are regular expressions.
II. RECURSION: if r and s are regular expressions over \sum, then the following are also regular expressions over \sum :

- (rs) the concatenation of r and s
- (r|s) rors
- (r*) the Kleene closure of r
III.RESTRICTION: The only regular expressions over \sum are the ones defined by I and II above.

Order of Precedence of Regular Expression Operations

- The order of precedence of r.e. operators are, from highest to lowest:
- Highest: () * concatenation | : lowest

Languages Defined by Regular Expressions

Let \sum be an alphabet. Define a function L as follows:
$L:\left\{\begin{array}{c}\left.\left\{\text { all } r . e^{\prime} \text { s over } S\right\} \rightarrow \text { all languages over } S\right\} \\ r \mapsto L(r)=\text { the language defined by } r\end{array}\right.$
I. BASE: $\mathrm{L}(\varepsilon)=\{\varepsilon\}, \forall \mathrm{a} \in \sum \mathrm{L}(\mathrm{a})=\{\mathrm{a}\}$
II. RECURSION: If $\mathrm{L}(\mathrm{r})$ and $\mathrm{L}(\mathrm{s})$ are the languages defined by the regular expressions r and s over \sum, then

- $\mathrm{L}(\mathrm{rs})=\mathrm{L}(\mathrm{r}) \mathrm{L}(\mathrm{s})$
- $\mathrm{L}(\mathrm{r} \mid \mathrm{s})=\mathrm{L}(\mathrm{r}) \cup \mathrm{L}(\mathrm{s})$
- $\quad \mathrm{L}\left(\mathrm{r}^{*}\right)=(\mathrm{L}(\mathrm{r}))^{*}$

Variations

Some definitions of regular expressions and regular languages define \varnothing to be a r.e. with $\mathrm{L}(\varnothing)=\varnothing$

Shorthand:

- $[\mathrm{a}-\mathrm{c}]=\mathrm{a}|\mathrm{b}| \mathrm{c}$
- [^a-c] = any letter other than a, b, c
- $[a-c \quad x-z]=[a-c, x-z]=a|b| c|x| y \mid z$
- $\mathrm{r}^{+}=\mathrm{rr}^{*}$
- $r ?=(r \mid \varepsilon)$
- $r\{n\}=r$ is concatenated n times
- $r\{n, m\} r$ concatenated n to m times

