FORMAL LANGUAGES

Alphabets and Strings

- An alphabet Σ is a finite set of characters (or symbols).
- A word, or sequence, or string over ∑ is any group of 0 or more consecutive characters of ∑.
- The length of a word is the number of characters in the word.
- The null string is the string of length 0. It is denoted ε or λ .
- A string of length n is really an ordered n-tuple of characters written without parentheses or commas.
- Given two strings x and y over Σ , the concatenation of x and y is the string xy obtained by putting all the characters of y right after x.

Languages over an alphabet

Let Σ be an alphabet. A formal language over Σ is a set of strings over Σ .

- \emptyset is the empty language (over Σ)
- $\sum^{n} = \{ \text{all strings over } \Sigma \text{ that have length } n \} \text{ where } n \in \mathbb{N} \}$
- Σ^+ = the positive closure of $\Sigma = \{ \text{all strings over } \Sigma \text{ that have length } \ge 1 \}$
- Σ^* = the Kleene closure of Σ = {all strings over Σ }

Operations on Languages

Let Σ be an alphabet. Let L and L' be two languages defined over Σ . The following operations define new languages over Σ :

- The concatenation of L and L', denoted LL', is $LL' = \{xy \mid x \in L \land y \in L'\}$
- The union of L and L', denoted $L \cup L'$, is $L \cup L' = \{x \mid x \in L \lor x \in L'\}$
- The Kleene closure of L, denoted L^{*}, is L^{*}={ x | x is a concatenation of any finite number of strings in L}. Note that ε∈L^{*}.

REGULAR EXPRESSIONS

Definition

Let Σ be an alphabet. The following are regular expressions (r.e.) over Σ :

- I. BASE: ε and each individual symbol of Σ are regular expressions.
- II. RECURSION: if r and s are regular expressions over Σ , then the following are also regular expressions over Σ :
 - (rs) the concatenation of r and s
 - (r | s)r or s
 - the Kleene closure of r - (r^{*})

III.RESTRICTION: The only regular expressions over Σ are the ones defined by I and II above.

Order of Precedence of Regular Expression Operations

- The order of precedence of r.e. operators are, from highest to lowest:
- Highest: * concatenation (): lowest

Languages Defined by Regular Expressions

Let Σ be an alphabet. Define a function L as follows:

- $L: \begin{cases} \{all r. e's \text{ over } S\} \rightarrow \{all \text{ languages over } S\} \\ r \mapsto L(r) = the \text{ language defined by } r \end{cases}$
- I. BASE: $L(\varepsilon) = \{\varepsilon\}, \forall a \in \Sigma L(a) = \{a\}$
- If L(r) and L(s) are the languages defined by the regular II. RECURSION: expressions r and s over Σ , then
 - L(rs) = L(r)L(s)
 - $L(r|s) = L(r) \cup L(s)$
 - $L(r^*) = (L(r))^*$

Variations

Some definitions of regular expressions and regular languages define \emptyset to be a r.e. with $L(\emptyset) = \emptyset$

Shorthand:

- [a-c] = a|b|c
- [^a-c] = any letter other than a, b, c
 r⁺ = rr^{*}
 r? = (r|ε)

•
$$\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$$

- [a-c x-z] = [a-c,x-z] = a|b|c|x|y|z

- $r\{n\} = r$ is concatenated n times $r\{n,m\}$ r concatenated n to m times